Multi-parameter assessment of natural recreational waters in Alberta using point of contact molecular tests

Patrick C. Hanington
University of Alberta
Health

- Faecal coliforms
- Enterococcus
- HF 183
- Legionella
- Saprozoics

Economics
- Cyanotoxins
- Swimmer’s itch
- Invasive mussels
- Fish populations
- Whirling disease
- Invasive plants

Environment
Waste water and drinking water are often monitored very vigilantly, other water types are poorly monitored, infrequently monitored or not monitored at all.

ISSUES

- Alberta is large, with hundreds of named lakes and thousands of storm water catchment areas.
- There are many types of targets to monitor for, and many have unique tests to detect them.
- While some targets have associated policy for exposure limits, many do not, or do not cause health issues.
- Water is dynamic and can change quickly, altering the targets that must be monitored.

OUR SOLUTION

- Unify testing methodologies whenever possible.
- Decentralize lab testing for primary monitoring purposes.
- Train and trust citizen scientists.
- Democratize water monitoring to vastly expand the scope, frequency and number of areas monitored.
Waste water and drinking water are often monitored very vigilantly, other water types are poorly monitored, infrequently monitored or not monitored at all.

OUR SOLUTION

- Unify testing methodologies whenever possible
- Decentralize lab testing for primary monitoring purposes
- Train and trust citizen scientists
- Democratize water monitoring to vastly expand the scope, frequency and number of areas monitored
DNA – everybody’s got it

Some genes are very similar between different species and some are very different

If we know the sequences of those different genes, we can design ways to detect them using qPCR
If you collect appropriately, you can catch the organisms you want to detect.
Some DNA is shared between different organisms and some is unique.
Breaking the cells open releases the DNA and allows us to access it.
Breaking the cells open releases the DNA and allows us to access it.
Blind validation to confirm quantification

- How many copies of the target gene are in the organism?
- Are there variations in the organism that can influence copy number?
- What is the extraction efficiency from the collected matrix?
- Are PCR inhibitors present in the matrix?
- Are there other organisms in the sample that could generate false-positive results?
Waste water and drinking water are often monitored very vigilantly, other water types are poorly monitored, infrequently monitored or not monitored at all.

OUR SOLUTION

- Unify testing methodologies whenever possible
- Decentralize lab testing for primary monitoring purposes
- Train and trust citizen scientists
- Democratize water monitoring to vastly expand the scope, frequency and number of areas monitored
Changing the way we think about monitoring water

WASTE WATER

STORM WATER

RECREATIONAL WATER

DRINKING WATER
Adapting lab methods for remote use

Water collection?
DNA extraction?
Raw water?
Hydragel system?
Lyophilized qPCR mastermix?
Liquid master mix?
Thermocycler
Cloud reporting?
Does portable equipment perform comparably to lab equipment? What are the differences/weaknesses?

Chai - Portable

R2 = 0.998
Eff = 1.6-1.7 (ideally 2)
LOD95: 50 copies

Rotorgene - Lab

R2 = 0.985
Eff = 1.9 (ideally 2)
LOD95: 2 copies
Waste water and drinking water are often monitored very vigilantly, other water types are poorly monitored, infrequently monitored or not monitored at all.

OUR SOLUTION

- Unify testing methodologies whenever possible
- Decentralize lab testing for primary monitoring purposes
- Train and trust citizen scientists
- Democratize water monitoring to vastly expand the scope, frequency and number of areas monitored
Establishing an experimental design that allows us to measure inexperienced user success (or failure)
Comparing experienced and inexperienced qPCR user results

DNA EXTRCTIONS RUN ON OPEN QPCR VERSUS LABORATORY MACHINE (ABI 7500 FAST)

User’s DNA extractions were run in duplicate using the lab reagents and equipment. Data was used to estimate 95, 90% confidence intervals. Users cercariae numbers were then compared to these confidence intervals.
Identifying where the error is: comparing DNA extraction between methods and users

User's DNA water samples were extracted and analyzed using the field method, and the lab method. Data was used to estimate 95%, 90% confidence intervals. Users cercariae numbers were then compared to these confidence intervals.
Waste water and drinking water are often monitored very vigilantly, other water types are poorly monitored, infrequently monitored or not monitored at all.

OUR SOLUTION

- Unify testing methodologies whenever possible
- Decentralize lab testing for primary monitoring purposes
- Train and trust citizen scientists
- Democratize water monitoring to vastly expand the scope, frequency and number of areas monitored
Some examples of how we’ve advanced our understanding of water-based organisms
Acknowledgments

Michelle Gordy | Sydney Rudko | Danielle Barry

Emmanuel Pila | Jacob Hambrook | Dr. Hongyu Li | Dr. Nick Ashbolt | Dr. Norm Neumann | Dr. Lilly Pang | Dr. Ron Zurawell | Ron Reimink | Marie Veillard | Clayton James | Bev Larson | Peter Giamberardino | Dr. Heather Proctor | Dr. Mike Pauldon | Dr. Simon Otto | Bradley Peter | Laura Redmond | Arin MacFarlane Dyer | Kathryn Wagner | Inside Education | Jay White

Mahmoud Tarrabain | Lisa Kish | Valerie Phillips | Cerina Lee | Emily Buss | Alyssa Turnbull
Arnika Oddy van-Oploo | Leah Brummelhuis