EOR Produced Water Recycling

Derek Mandel
Director of Technology, Flex EDR

Solar Saltworks
Project Overview

- Reliable desalination of oil and gas produced water for reuse.
- Desalination saves chemical costs (Polymer), which pays for water treatment and yields 20% Return on Investment, improving EOR economics
- More water reuse
- Exceeded all metrics for capacity, economics, reliability and timeline
- Delivered 8 months ahead of schedule, treated more than 2 x the water planned

Flex EDR pilot plant at Enerplus site in Medicine Hat, Alberta
Polymer Flood Enhance Oil Recovery (EOR)
Polymer increases solution viscosity, extracting more oil
Heavy oil (Alberta) requires higher viscosity = 2-3x more polymer than other regions
Polymer costs can be very high ($2-10M/year for 1,000-4,000 m³/day site)
Polymer Flood Enhance Oil Recovery (EOR)
With Desalination

Desalination offers:
• Reduced polymer consumption by ~50%, saving on chemical cost ($1M-$5M/y)
• Higher injectivity and reduced well scaling
• Reduced waste water volume
Electrodialysis Reversal (EDR)
Electrodialysis Reversal (EDR)

- Low pressure membrane system
- Low Cost ($2-6/m³)
- Self Cleaning
- Target salt concentration can be tuned to desired concentration

Animation: https://www.saltworkstech.com/technology/flex-edr-advanced-electrodialysis-reversal-system/
Ion Flux: Ion Exchange Membranes

- Novel, highly cross-linked polymer composition improves resistance to oils, solvents and acids/bases.
- High selectivity to multivalent ions
Flex EDR Field Pilot
Medicine Hat, Alberta
Flex EDR Field Pilot
Medicine Hat, Alberta

<table>
<thead>
<tr>
<th></th>
<th>Flex EDR Fit</th>
<th>Pilot Operating Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet TDS</td>
<td>5,000-25,000 mg/L</td>
<td>7000-8000 mg/L</td>
</tr>
<tr>
<td>Treatment Target TDS</td>
<td>500-3000 mg/L</td>
<td>1500-2000 mg/L</td>
</tr>
<tr>
<td>Recovery</td>
<td>Chemistry dependent, typical 85-95%</td>
<td>90%</td>
</tr>
<tr>
<td>Oil in water concentration</td>
<td>Tested up to 1000 ppm Not limited yet Ideally Remove >C10</td>
<td>50-1000 ppm</td>
</tr>
</tbody>
</table>

Produced and Treated Water
Pilot Operating Conditions

• 2-5 m³/day (prefiltration capacity)

• 24/7 automated operation with self cleaning cycles

• Operated for 42 days, treating 150 m³

• >90% uptime

• System held under anaerobic conditions (Nitrogen blanket)
Desalinated produced water used less polymer to reach target viscosity

- The data suggests **50% polymer savings.**
Desalinated produced water used less polymer to reach target viscosity

- The data suggests **50% polymer savings**.

- Cost of desalination is less than the polymer savings
Challenges

Filtration
• Field pilot produced water had very high oil-in-water
• More research required into reliable, reusable filtration.

Extreme weather
• Blizzards and windstorms interrupted pilot operation
Keys to Success

- Alberta Innovates management of schedule and objectives drove project to completion
- Working with a “right-size” corporate partner to implement efficiently and drive innovation
- Off-site testing for better field pilot expectations and design
- Field pilot testing to experience real conditions
Thank you