Artificial Intelligence Assisted Computer Vision Application in Oil & Gas Mining Industry

Visual inspection plays an important role in the processing of oil sands. An oil sands control room typically has several video feeds being continuously monitored by control room operators. The ore quality at the ore preparation plant is monitored to determine optimal ore blending and water addition, and the liquid/froth interface level is monitored at the ore processing stage to maintain optimal extraction efficiency. There are several challenges with this approach. First, since the visual inspection is qualitative in nature, operators are not consistent in how they interpret and respond to camera feeds. Second, the need for near continuous monitoring burdens control room operators. NTWIST proposes to use computer vision, a subset of artificial intelligence which enables the quantification of visual information, to address these challenges. This solution is positioned to provide significant environmental and economic benefits to customers and strengthen Alberta’s position as a leader in applied artificial intelligence.

APPLICATION

NTWIST will use the cameras already installed on site in combination with computer vision algorithms to automate tasks currently being carried out through remote visual inspection by control room operators at oil sand operations. NTWIST will operationalize these computer vision algorithms using its existing software platform which communicates with the mine’s existing equipment and control room software.

Learn how albertainnovates.ca
PROJECT GOALS

The key goals of the project are:

- Standardize the interpretation of remote visual video feeds to the control room to reduce variability in processing conditions
- Reduce the burden on operators by providing them with alarms and recommendations when needed to help better inform their decisions
- Allow for tighter control of key operating parameters

BENEFITS TO ALBERTA

The successful implementation of this NTWIST technology or use of the knowledge generated could result in:

- Improved bitumen extraction efficiency through optimized process control
- Reduced GHG emissions and water consumption as a direct result from optimized process inputs (water, temperature, residency time)
- Reduced operational costs resulting from optimized energy usage in processing streams

CURRENT STATUS

AUG 2021

NTWIST is in process of identifying and compiling primary and secondary data sources from upstream and downstream processes in oil sands processing, and setting up the initial models for machine learning. These data sources will be foundational to developing all required data models for their computer vision algorithms and AI learning approach.

Disclaimer • Alberta Innovates (AI) and Her Majesty the Queen in right of Alberta make no warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information contained in this publication, nor that use thereof infringe on privately owned rights. The views and opinions of the author expressed herein do not necessarily reflect those of AI or Her Majesty the Queen in right of Alberta. The directors, officers, employees, agents and consultants of AI and the Government of Alberta are exempted, excluded and absolved from all liability for damage or injury, however caused, to any person in connection with or arising out of the use by that person for any purpose of this publication or its contents.