

Interfacial Micro and Macro Rheology of Fractionated Asphaltenes

R. Khalesi, H. Yarranton, and G. Natale*

* Associate Professor, Lead of Complex Fluids Laboratory, Chemical and Petroleum Engineering, University of Calgary.

Why Interfacial Rheology?

Various molecular structure → differences in solubility and surface activity

Methodology

3 of 10

Macro- Dilatational Rheology

4 of 10

Aging

- IA: Interfacial Active Asphaltene
- A: Asphaltene
- PA: Partially Active

Asphaltene Interfacial Rheology

Emulsions

- A novel Interfacial Microrheological methodology
- Significantly faster film formation in IA fraction
- Micromechanical heterogeneities at interfaces in all fractions
- Smaller average drop size both in fresh and aged emulsions in the IA vs PA fraction.

Future Work

Interfacial Microrheology to Explore Emulsion Treatments

gnatale@ucalgary.ca