Mild-catalytic conversion toward diluent reduction

Developing an actionable path to partial upgrading at site

NEXTSTREAM[®]

NPUC Workshop - May 26, 2022

- Introduction to NextStream
 - The team
 - The technology
 - Our approach to reducing bitumen viscosity in the field
- Technical Discussion
 - Compare the NextStream catalytic approach to a thermal-only mechanism
 - Equivalent conversion basis 90% viscosity reduction
- Analytical Analysis to Provide Insight into Mechanism?
 - Whole crude sample analysis
 - XPS analysis of asphaltene
 - Is there a simple mechanistic explanation?
- Brief Look at Viscosity Reduction in the Field

NextStream Heavy Oil – The Team

- 10 years of fundamental research and development
 - Joint effort between Baker Hughes and Rice University
 - Considerable thought, design and effort from the outset
- Spun out under the NextStream umbrella in 2018
 - Autonomous, self-directed team
 - Baker Hughes retains minority ownership
 - Provides operations support
- Currently scaling proprietary technology, moving from the laboratory into the field

Sivaram Pradhan, Ph.D. Catalyst R&D

Amin Haghmoradi, Ph.D. Process engineering

Mike Shammai, B.Sc. Reservoir dynamics Baker Hughes Fellow (1958-2021)

Manjusha Verma, Ph.D.

Analytical chemistry

Wade Bullock Equipment & process engineering

Jacob Gibson, Ph.D.
Partial upgrading
technology evaluation

Well-designed Catalysts Allow Low-temperature Conversion

Benefits of low-temperature reaction are many:

- Lower consumption of natural gas hence, lower GHG emission profile
- Minimal thermal cracking, thereby eliminating the formation of coke and olefinic material – avoids the need for post-processing hydrotreatment
- Simplified process allowing for seamless integration into existing SAGD facilities

Today's Discussion: Catalytic vs. Thermal Reaction

In both cases, equivalent conversion (viscosity reduction) sought for comparison

Whole Sample Analysis – Equivalent Conversion

*Analysis conducted by 3rd party laboratory

	Viscosity (30°C)	Olefin (%)*	P-Value*	Sulfur*	Asphaltene (%)
Untreated	140,000 cP	<0.30%	2.6	5.1	14.6
Catalytic	14,700 cP	<0.30%	2.2	4.7	11.8
Thermal	14,500 cP	0.80-0.90%	1.6	4.6	11.8

- Most notable, is the onset of olefins detected in the thermally-cracked sample
- P-Value substantially higher for the catalytically processed material
 - Suggests increased asphaltene stability
- Similar decline in both sulfur and asphaltene content
 - Not necessarily chemical modification of asphaltene molecules
 - Possible increased solubility in greater hydrocarbon matrix

XPS Analysis of Asphaltene Fraction

		*XP:			
	Aliphatic	Thiophenic	Sulfoxide	Sulfone	
Untreated	66.1%	33%			
Catalytic	5.2%	57.8%	33.9%	3.0%	
Thermal	4 <u></u> - N	63.2%	34.6%	2.1%	
Cat _{Field}	1.9%	62.3%	34.9%	1.0%	95% visc. reduction
	S	S	S		
BE 1	66.8 eV BE 165.3	B eV BE 164.2 eV	BE 162.7 e	V	

- Complete absence of aliphatic sulfur in thermally cracked product
 - Supports NextStream catalytic approach as more "mild"
 - Also suggests additional mechanism of conversion, which does not involve C-S bond
- Unlikely that significant thiophenic sulfur is being converted, but requires further analysis

Differences Between Mild-catalytic and Thermal Approaches

- Primary difference is the significant amount of olefin generation under higher temperature
 - High olefin content (~1.0%) limits the deployment of thermal cracking/visbreaking at site
 - Lower temperature + catalyst approach yields substantial viscosity reduction with little-to-no-olefin generation
 - Does not require post-reaction hydrotreatment, thereby simplifying the partial upgrading process at site
- Product maintains much of its stability as evidenced by P-Values above 2.0
 - Thermal cracking processes quickly reach a P-Value near 1.3, where stability and blendability with other crudes becomes problematic – again, limiting their deployment as a primary mechanism
- Preliminary XPS evaluation of the processed asphaltene fractions identifies significant differences
 - Mild-catalytic approach does not completely eliminate aliphatic sulfur bonds, suggesting a less "aggressive" approach
 - Given that both approaches achieve equivalent viscosity reduction, the catalytic process must introduce an additional, non C-S chemical reaction.

Increased Hydrogen Donation from Tetralin-like Features

- Catalyst surface designed to interact with structural moieties present in asphaltenes
 - Asphaltenes often associated with high "tetralin-like" features, or "hydrogen donor" capability
 - High asphaltene density at catalyst surface increases the frequency of hydrogen donation to terminate free radical reactions leading to an aromatic product vs. olefinic

Pseudo concentration affect

 similar to removing free radical access to paraffinic or alkyl "donors", which eliminate to form single or double carbon-carbon double bonds

A Brief Look at Performance in the Field

- Prototype system contains the following components:
 - "Inverted" emulsion separator provides diluent-free bitumen feed
 - Reactor section contains 4 catalyst-packed "pipes" in series configuration
 - Post-reaction heat exchange to preheat feed to the system
 - Substantial instrumentation and sampling capabilities
- Performance KPI's
 - Viscosity
 - Bitumen 1,138,000 cP (15°C)
 - Product 49,000 cP 80,600 cP (15°C)
 - Olefin content
 - 95% viscosity reduction achieved with no detectable olefins (<0.3%)
 - As high as 0.6%
- Quality improvements
 - TAN < 1.0
 - 15% reduction in vacuum residue IBP remains close to 200°C

Thank you

