

Canada

Natural Resources **Ressources naturelles** Canada

Enhanced representation of thermal cracking chemistry in the context of bitumen partial upgrading

Anton Alvarez-Majmutov

NPUC Workshop on Advances in Bitumen Processing, May 26, 2022

Bitumen partial upgrading

CanmetENERGY Devon's R&D program since 2015:

Our modeling approach to bitumen partial upgrading

Bitumen composition modeling

Molecular structure features follow statistical distributions

- Each molecule class (paraffins, aromatics, etc.) characterized by its own structural descriptors
- Mixture of molecules (10³-10⁵) is created via Monte Carlo simulation to match analytical feed properties

Natural Resources Canada

Canada

Ressources naturelles

Canada

4

Classification of bitumen molecules

 SARA classes are formed by the grouping of molecules based on structural features and theoretical solubility

Asphaltenes distinction based on solubility

- Asphaltene character assigned based on the solubility criterion of the SOL method (Jaffe et al., Ind. Eng. Chem. Res., 2005, 44)
- Hildebrand solubility parameters (δ) of model bitumen molecules in *n*-pentane obtained by molecular dynamics

Canada

Model bitumen molecules

Bitumen composition modeling – bulk properties

- Bitumen composition represented by an ensemble of 100k molecules
- Molecules were reconstructed from bulk property measurements and NMR spectroscopy data

Property	Experimental	Simulated
Density at 15.6°C, g/mL	1.0146	1.0139
API gravity, °API	7.8	7.9
Carbon, wt%	83.38	83.94
Hydrogen, wt%	10.64	10.39
Sulfur, wt%	4.95	4.74
Nitrogen, wt%	0.49	0.41
Oxygen, wt%	0.54	0.52
SARA analysis		
Saturates, wt%	20.7	19.2
Aromatics, wt%	39.0	39.6
Resins, wt%	25.1	22.0
C₅ asphaltenes, wt%	19.3	19.3

Bitumen feed properties

Bitumen composition modeling – asphaltenes

• Asphaltene fraction consists of monomeric island and archipelago structures

Reaction modeling of thermal cracking

• Thermal cracking chemistry organized into reaction families

Reaction modeling of thermal cracking

• Rate parameters organized by similarity into a small set of quantitative structure-reactivity correlations (QSRC):

 Massive reaction network generated on-the-fly with a kinetic Monte Carlo (kMC) algorithm, whereby molecule cracking reactions progress one by one over time

Visbreaker simulations – product yields

Product yield structure evolves as a result of C-C and S-C bond cracking reactions

Visbreaker simulations – asphaltenes

Condensation and dealkylation reactions drive formation of new asphaltenes

Visbreaker simulations – API gravity

The model enables tracking product properties of interest

- API gravity estimated by applying a linear mixing rule on the individual densities of molecules
- The rise in condensation and dehydrogenation reactions at 420°C makes the simulated API gravity curve gradually bend

Visbreaker simulations – coke modeling

Coke (toluene insolubles) is represented as a sub-fraction of pentane insolubles:

- Pentane insolubles boiling above 555°C as per the SOL method (Jaffe *et al.*, Ind. Eng. Chem. Res., 2005, 44)
- Pentane insolubles with H content below 6 wt% as per Wiehe's Solvent-Resid Phase Diagram (Wiehe, Ind. Eng. Chem. Res., 1992, 31)

Visbreaker simulations – cracked naphtha composition

The model can generate the hydrocarbon type composition of products of interest

- The explicit distinction between two possible dealkylation pathways allows approximating paraffins and olefins with good precision
- The model has a tendency to yield more aromatic products than naphthenic ones

Modeling different feedstocks – DAO cracking

Model was tested against the data set from Yan et al., Energy Fuels, 2020, 34

Bitumen VR DAO feed properties

Property	Experimental	Simulated
Density at 15.6°C, g/mL	1.0772	1.0695
API gravity, °API	-0.3	0.7
Carbon, wt%	83.20	83.68
Hydrogen, wt%	9.80	9.69
Sulfur, wt%	5.40	5.46
Nitrogen, wt%	0.60	0.55
Oxygen, wt%	1.00	0.61
C ₅ asphaltenes, wt%	5.7	5.7
Distillation fractions		
HGO(343-525°C), wt%	11.8	11.1
Vacuum residue (525°C+)	88.2	88.9

Product yield profiles at 417-438°C Lines (simulation); squares (experimental data)

Modeling different feedstocks – DAO cracking

Model predicts formation of new asphaltenes

Summary

- Approaching refinery process modeling from a fundamental perspective offers a number of advantages in terms of capabilities
- Feed compositional modeling is the starting point for molecular reaction modeling
- Reaction modeling of complex chemistries must be done so that the system is manageable in size
- Quantum chemistry and molecular dynamics play a key role in modeling properties of molecules
- The framework is general in essence and can be extended to other process chemistries (*e.g.* hydrocracking)

Anton Alvarez-Majmutov, Ph.D. Renewables, Hydroprocessing and Modeling R&D Lead Email: <u>anton.alvarez-majmutov@nrcan-rncan.gc.ca</u> Telephone: 780-987-8348

Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022

Natural Resources Canada

Ressources naturelles Canada

