

CLEAN RESOURCES

CLEAN TECHNOLOGY

HYDROGEN

Assessing the Techno-Economic and Environmental Feasibility of Distributed Hydrogen Production Pathways to Decarbonize Heavy-Duty Transport in Alberta

Transitioning to a net-zero energy system where hydrogen is used as a fuel for heavy-duty transport, will require the creation of new value chains that make hydrogen available at a reasonable cost at widely distributed fueling stations across Alberta. The objective of this project is to analyze feasibility, cost, and emissions of producing hydrogen on-site at heavy-duty fueling stations across Alberta. The results of the study will provide insights and transfer knowledge to industry, government agencies, utilities, and investors interested in building, and/or operating heavy-duty fueling stations.

(A) DISTRIBUTED WATER

ELECTROLYSIS

Recovery
& pipeline
transport

NG-Oxyfred single cycle

Fuel cell
or gas
turbine

Fuel cell
or gas
surbine
Sell to current market

Fuel cell
or gas
turbine

Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel cell
or gas
turbine
Fuel ce

FUNDING DETAILS

RECIPIENT:

University of Alberta

PARTNERS:

University of Calgary
The Transition
Accelerator

TOTAL BUDGET:

\$400,000

AI HCOE FUNDING:

\$200,000

PROJECT DATES:

MAR 2023 – APR 2025

PROJECT TRL:

Start: 6

End: 8

APPLICATION

The decarbonization of the heavy-duty class 8 trucks is a key priority for the province of Alberta. Class 8 trucks and other heavy-duty (HD) vehicles such as buses, trains and off-road vehicles account for account for 36% of total emissions from the transport sector in Alberta. The application of the project is to help the buildout of hydrogen infrastructure needed for decarbonization of Alberta's heavy-duty transport sector.

CLEAN TECHNOLOGY

HYDROGEN

PROJECT GOALS

- Conduct techno-economic-environmental assessment of water electrolysis and methane pyrolysis-based processes to produce hydrogen at heavy-duty fueling stations located along key transport corridors in Alberta.
- Create a decision support tool that uses industry input and techno-economic models to create a decision matrix for deploying hydrogen fueling station sites across the province.
- Provide insights and transfer knowledge to industry, government agencies, utilities, and investors interested in building, and/or operating heavy-duty hydrogen fueling stations.

BENEFITS TO ALBERTA

- Development of a fuel hydrogen value chain offers a great opportunity to advance towards a clean future and creates diverse job opportunities in multiple sectors.
- The analysis, insights, and the decision support tool developed in this project can be used by industry, government agencies, utilities, and investors to deploy hydrogen technologies.
- This project could create new jobs across the value chain spanning hydrogen production, processing, distribution, transport, heating and in heavy industry.
- This would also create investment opportunities for the province, create infrastructure that supports transportation of hydrogen.

3 Students
Trained

>1000 Future Jobs

CURRENT STATUS

MAY 2023

The project was kicked off in March 2023. Design for the distributed production pathways based on basic chemical engineering principle are underway.