

Speaker introductions

Paolo Bomben
Alberta Innovates
Senior manager
Clean Technology Development
and program co-lead

Axel Meisen
Alberta Innovates
Senior advisor and program
co-lead

Nathan Ashcroft
Stantec
Stantec team lead

Ken Harding
Stantec
Senior advisor – energy
and chemicals

Agenda

- 1. Introduction
- 2. Imagining a BBC future
- 3. Polymer essentials
 - Types
 - Markets and opportunities
 - Concerns
- 4. Polymer production processes
- 5. Fundamental challenges
- 6. Insights and conclusions
- 7. Webinar Series: Recap

Introduction to the webinar

Recap: Imagining a BBC future

Polymers from bitumen: key questions

- What polymers to make?
- How to make them from bitumen?

Polymer essentials

What are polymers?

Plastics are encountered daily

- Plastics generally a synthetic material made from single / combination of polymer(s) and various additives (e.g. pigment)
- Consumer / industrial / medical applications
- Adhesives, bubble-gum, carpeting, clothing, cosmetics, drill muds, flooring/furniture, hygiene products, packaging / bottles, paint, piping, sealants, siding, water treatment etc.

Polymers - products used to make plastics

- Made from monomers
- Mono(mer) 'one' unit
- Poly(mer) many units
- Polymerization: the joining of monomers to create a "polymer chain"
- Chain length: can be varied by design; can be <u>very</u> long e.g. flocculants (water treatment)
 - The chain can contain more >1 monomer, randomly distributed or not

Where do polymers come from?

Natural Semi-Synthetic Synthetic

Example of a **Monomer**: Stryrene (liquid)

Ref: https://www.thoughtco.com/chemicalstructures-starting-with-the-letter-s-4071311

Example of a **Polymer**: Stryrene (solid)

Ref: http://www.rsc.org/learnchemistry/resource/res00000479/additionpolymerisation?cmpid=CMP00004755

Natural polymers

- Polysaccharide (storage (energy) / structure)
 - Cellulose (glucose)
 - Other: chitin, cotton, keratin, starch
- Natural rubber
 - Poly-Isoprene

- Polyaromatic
 - Lignin

- Proteins (amino acids)
 - Silk (glycine, serine, alanine)
 - Gelatin, keratin

Ref: https://en.wikipedia.org/wiki/Celluloses

Poly-Isoprene
$$\begin{array}{c|c} CH_2 & CH_2 \\ \hline C=CH \\ \end{bmatrix}_n$$

Ref: https://pslc.ws/macrog/exp/rubber/sepisode/meet.htm

Ref: http://www.icfar.ca/lignoworks/content/what-lignin.html

Ref: http://www.chem.uwimona.edu.jm/courses/CHEM2402/Textiles/Animal_Fibres.html

Semi-Synthetic polymers

Acetate groups

O CH₃ O CH₃

Example

- Cellulose acetate (chemically modified cellulose)
- Feed: purified natural cellulose from cotton linters or wood pulp
- Use
 - Cigarette filters
 - Lego bricks (1949 1963)
 - Magnetic tape (IBM)
 - Photographic film (Eastman Kodak)

• Transition - 1950's

- Natural to synthetic polymers
 - 1950: 2 million tons
 - 2015: 380 million tons
- Enabler
 - Rapid development in synthetic chemistry / material science
 - Example:
 - Tupperware developed by Earl Tupper in 1937 at DuPont
 - Teflon Du Pont (1938)

World Plastics Consumption (1950 – 2015). Source: Plastics Europe, Ass. Of Plastics Manufacturers, Berlin, Aug, '16, pg. 1.

Synthetic polymers

Synthetic polymers

- Produced from monomers
- Monomers: produced from (petro)-chemical feeds / intermediates

Polymer development was / continues to be driven by

- Demand for improved product
- Advantage of synthetics: range of monomers offers the opportunity for molecular design
- Technology development in refining / petrochemical sectors
- Geographic availability of natural polymers e.g. natural rubber (tire industry)
- Politics / economics / society

Global production of major polymers

1950: 2 million tons

2015: 380 million tons

Common modern synthetic polymers

PA - Polyamides (e.g. Nylon)

PE (LD, LLD, MD, HD) - Polyethylene series

PET - Polyethylene terephthalate

PP – Polypropylene

PS - Polystyrene

PUR – Polyurethane

PVC - Polyvinyl chloride

SBR - Styrene Butadiene Rubber

Market segments

Commodity plastics

Ease of use, convenience

Engineering plastics

Mechanical / thermal performance

High performance plastics

Mechanical / thermal performance

PET – Polyethylene terephthalate

PVC - Polyvinylchloride

PUR – Polyurethane foam

PS - Polystyrene

PC - Polycarbonate

SBR - Styrene Butadiene Rubber

Opportunity

- Plastics / polymers an essential part of everyday life
- Global plastics market (forecast): US\$ 654 billion (2020). By 2030, expected to grow to US\$ 1 trillion
- Growth (2015 2020): 3.9%
 - Drivers: population, urbanisation, growing middle class, environmental aspects (bio-polymer)

Polymer	Mt/y ⁽¹⁾	Bitumen bpd (2)	% Split
PP	68	1,256,000	23%
LD, LDPE	64	1,182,000	22%
PP & A	59	810,000	15%
HDPE	52	961,000	18%
PVC	38	315,000	6%
PET	33	445,000	8%
PUR	27	381,000	7%
PS	25	498,000	9%
Total	407	5,350,000	100%

(1) Ref.: R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Sci. Adv. 2017; 3:e1700782 (19 Jul 2017)

(2) Alberta Innovates - rough approximation

NOTE: Given the rate of change in the polymer sector, challenges of obtaining / verifying market data, the table to be read for illustrative purposes

What do power and poly refer to here?

Concerns with existing polymers

Definitions

Biodegradable

- A materials deterioration both chemical / mechanical (size) by natural means (air, light, micro-organisms)
- Biodegradable materials and products of biodegradation are not necessarily compostable nor environmentally safe

Compostable

- Materials that break-down chemically under composting and anaerobic digestion conditions
 - Domestic composting: <55°C (unstable), lower humidity and oxygen levels
 - Industrial composting: 55-60°C, high humidity, oxygen. European Standard EU 13432

Move this slide up?

Plastic / polymer waste

Beverage bottles

- Polyethylene Terephthalate (PET)
- Properties
 - Flexible / strong, light, non-toxic, 100% recyclable / not biodegradable
 - Recycling complexity increases with mixed waste
- Volume
 - USA: ~50billion plastic water bottles / annum. 153 disposable bottles / person / annum.
- Waste (globally)
 - 2015: 6,300 million tons plastic waste. Landfill 79%; incinerated 12%, 9% recycled

Carpets

- Not biodegradable, highly complex mix of inseparable materials (adhesives, antistatistics, pigments, UV stabilizers (fading)
- European Union
 - 1.6 million tons are disposed of, 960ktpa (60%) landfilled
 - Germany: 400ktpa incinerated, landfilling prohibited
 - Reference: http://changingmarkets.org/wp-content/uploads/2017/04/German-Carpet-Report-ENG.pdf
- United States
 - <u>2014</u>: produces 1 billion m² of carpet / rugs
 - Reference: https://changingmarkets.org/about/

Slow degradation - synthetic polymers

Degradation mechanisms

- Mechanical: river / sea action
- Chemical
 - Microbial / aerobic / anaerobic
 - Photo-chemical: sunlight (UV)
 - Thermal: cold / heat

Design

- Synthetic polymers are typically not designed to degrade
- Modern polymers
 - Chemically different to natural polymers
 - Most modern polymers largely biochemically inert
 - Degradability: function of the polymers chemical composition / structure

Opportunity

Are the figure and table repeated for emphasis?

Plastics / polymers

- An essential part of everyday life
- Global plastics market (forecast): US\$ 654 billion (2020)
- Growth (2015 2020): 3.9%
 - Drivers: population, urbanisation, growing middle class, environmental aspects

Does the term 'biopolymers' survive?

'Biopolymers' outlook

- Growth(2015-2016): 4.4%
- 2016
 - 6.6 million tons produced
 - <1% of global polymer production
- 2021 (forecast)
 - 8.5 million tons

 Ref: nova-Institut GmbH, 20th Feb. 2017, Bio-Based Polymers Worldwide: Ongoing Growth despite difficult market environment
- 2030 (forecast)
 - ~25 million tons (@ 5% of total polymer)

Polymer	Mt/y ⁽¹⁾	Bitumen bpd (2)	% Split
PP	68	1,256,000	23%
LD, LDPE	64	1,182,000	22%
PP & A	59	810,000	15%
HDPE	52	961,000	18%
PVC	38	315,000	6%
PET	33	445,000	8%
PUR	27	381,000	7%
PS	25	498,000	9%
Total	407	5,350,000	100%

(1) Ref.: R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Sci. Adv. 2017; 3:e1700782 (19 Jul 2017)

(2) Alberta Innovates - rough approximation

NOTE: Given the rate of change in the polymer sector, challenges of obtaining / verifying market data, the table to be read for illustrative purposes

Polymer production processes

Current **synthetic** polymer production processes: Schematic flowsheet with Bitumen as feedstock

Natural polymer production processes: Schematic

Potential polymer production processes: Schematic flowsheet with Bitumen as feedstock

Polymer production processes: **Generic flowsheet** with Bitumen as feedstock

Technical challenges

Challenges to produce polymers from bitumen

Choice of polymers

- Meeting expectations: performance, cost, biodegradability / compostability, reuse, recyclability, end-of-life disposition, environment, and social acceptance
 - Conventional synthetic polymers: inherently challenged
 - Unconventional synthetic polymers (e.g., cross-linked, protein-based, and 'irregular' polymers): promising

- Selection of polymer pathways and flowsheets for complex bitumen feedstock
 - Conventional synthetic polymers: integrated with traditional bitumen refining
 - Unconventional synthetic polymers: largely undeveloped
- Quantification of energy requirements and GHG emissions

Insights and conclusions

Insights and conclusions: Polymers

- Synthetic polymer industry: large, global, and growing
- Current major synthetic polymers: environmental and other concerns
- New (biologically inspired and irregular polymers) and their processes may lead to fundamentally new approaches and uses of bitumen

27

Webinar Series Recap

Closing remarks: BBC Webinar Series Recap

 Rising populations and prosperity drive large-scale demands for materials (e.g., housing, vehicles, consumer goods)

 Producing materials from bitumen ('BBC products') diversifies Canada's oil sands sector

 BBC products pose fruitful business, scientific, technical, environmental, and social challenges

 Four major BBC product categories (with >100,000 bpd bitumen requirements) have emerged to date:

- Carbon fibres and their combination products
- Asphalts and asphalt transportation
- Polymers
- Vanadium for electricity storage

 Alberta Innovates supports the development of these and other BBC products, their production, and uses

Questions?

Quick Links

View the reports

https://albertainnovates.ca/wp-content/uploads/2018/04/BBC-Report-1.pdf

https://albertainnovates.ca/wp-content/uploads/2018/04/BBC%20-%20Report%202.pdf

News release

https://albertainnovates.ca/bitumen-beyond-combustion-program-invests-2-million-in-research/

View all webinars

https://vimeo.com/cosia

Disclaimer: Stantec reserves the rights to all imagery used in this presentation unless otherwise referenced. Under no conditions are these images to be copied and/or distributed externally.

Talk to us

Paolo Bomben

Alberta Innovates

Email: Paolo.Bomben@albertainnovates.ca

Axel Meisen

Alberta Innovates

Email: axel@meisen.ca

Nathan Ashcroft

Stantec

Email: Nathan.Ashcroft@stantec.com

Ken Harding

Stantec

Email: Ken.Harding@stantec.com