

CLEAN ENERGY

CLEAN TECHNOLOGY

HYDROGEN CENTRE OF EXCELLENCE

First-of-a-Kind Cryo-Compressed Hydrogen Demonstration in Class 8 Trucking

FUNDING DETAILS

Verne is developing the first demonstration of a Class 8 truck powered by cryo-compressed hydrogen. Cryo-compressed hydrogen allows hydrogen to be cheaply stored in its densest state, maximizing range and payload for heavy-duty vehicles like Class 8 trucks. Verne will work with Alberta-based Diesel Tech Industries (DTI), to retrofit a diesel truck to run on cryo-compressed hydrogen and diesel using a "dual-fuel" combustion engine. Verne will then work with Alberta Motor Transport Association (AMTA) and Alberta-based fleets to demonstrate the benefits of cryo-compressed hydrogen trucks when operating in Alberta.

Verne

PARTNERS:

Diesel Tech
Industries (DTI)
AMTA

TOTAL BUDGET:

\$7,380,000

AI FUNDING:

\$2,000,000

PROJECT DATES:

JAN 2024 -

JAN 2026

PROJECT TRL:

Start: 5

End: 7

APPLICATION

Verne will demonstrate the first Class 8 truck powered by cryo-compressed hydrogen (CcH₂). A diesel engine truck will be retrofitted with dual-fuel (hydrogen-diesel) technology from Alberta and with Verne's high-density CcH₂ storage. Verne and collaborators in Alberta will pilot the truck and a mobile refueler in Alberta. Verne's CcH₂ storage systems can also power fuel cells and hydrogen engines and are suitable for all heavy-duty segments where range, payload and vehicle cost are important: trucking, port equipment, and more.

CLEAN TECHNOLOGY

HYDROGEN CENTRE OF EXCELLENCE

PROJECT GOALS

Verne will demonstrate a cryo-compressed hydrogen Class 8 truck to validate the suitability of the technology in the Alberta operating environment and beyond. Through this project, Verne aims to:

- Understand the unique operating needs of the heavy-duty trucking industry in Alberta and the implications for onboard hydrogen storage systems.
- Build strong relationships with Alberta-based OEMs, fleets, infrastructure providers and ecosystem developers.
- Demonstrate the benefits of cryo-compressed hydrogen on vehicle range and payload to Alberta-based stakeholders.
- Develop awareness of and early experience with cryocompressed hydrogen vehicles within the hydrogen ecosystem in Alberta, enabling future deployments in trucking, transit, hydrogen distribution and aviation.

BENEFITS TO ALBERTA

Verne's project will establish Alberta as a leader in hydrogen innovation by making it one of the first adopters of CcH₂ technology for heavy-duty transportation. Throughout the project, Verne will support the development of Alberta's ecosystem by working with truck upfitters, technicians, infrastructure providers and fleets to share project learnings. At least 3 Alberta-based personnel will be directly involved in setting up the mobile refueling station for cryo-compressed hydrogen, integrating the truck, or operating the truck.

Long-term benefits of cryo-compressed hydrogen deployment in Alberta include environmental benefits (decarbonization of the heavy-duty transport sector responsible for almost 10% of Canadian GHG emissions), social benefits (reduction in harmful traffic emissions that disproportionately impact low-income communities), and economic benefits (establishment as a leader in the growing hydrogen market).

3 HQP Students
Trained

1 New Product/Service

190,000 kt/yr Future GHGs Reduced

CURRENT STATUS

APR 2024

The project has commenced, and Verne is already making rapid progress towards its first three milestones.

JUN 2025

Verne has designed and built the world's first Class 8 truck powered by cryo-compressed hydrogen. Verne has successfully completed initial testing of the truck, including drive testing of the vehicle in an off-road setting.